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Abstract. Compartmental models enable the analysis and prediction of an epidemic 

including the number of infected, hospitalized and deceased individuals in a population. 

They allow for computational case studies on non-pharmaceutical interventions thereby 

providing an important basis for policy makers. While research is ongoing on the 

transmission dynamics of the SARS-CoV-2 coronavirus, it is important to come up with 

epidemic models that can describe the main stages of the progression of the associated 

COVID-19 respiratory disease. We propose an age-stratified discrete compartment model as 

an alternative to differential equation based S-I-R type of models. The model captures the 

highly age-dependent progression of COVID-19 and is able to describe the day-by-day 

advancement of an infected individual in a modern health care system. The fully-identified 

model for Switzerland not only predicts the overall histories of the number of infected, 

hospitalized and deceased, but also the corresponding age-distributions. The model-based 

analysis of the outbreak reveals an average infection fatality ratio of 0.4% with a pronounced 

maximum of 9.5% for those aged ≥80 years. The predictions for different scenarios of 

relaxing the soft lockdown indicate a low risk of overloading the hospitals through a second 

wave of infections. However, there is a hidden risk of a significant increase in the total 

fatalities (by up to 200%) in case schools reopen with insufficient containment measures in 

place.  
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The coronavirus-induced COVID-19 epidemic1 is constantly pushing governments to take rapid 

decisions on measures for protecting the public health while minimizing economic damage. 

The emergency to act after exceeding infection rates of 1 out of 10’000 individuals has been 

recognized by most governments. The coronavirus containment measures often started by 

recommending social distancing and improved hand hygiene and ended by the complete 

lockdown of countries in extreme cases. After putting a country into an extraordinary state in 

response to a first epidemic wave, the next challenge for governments is the timely release of 

drastic measures to reduce the psychological and economic damage while preventing a possible 

second epidemic wave. Timely decision making is crucial when implementing and relaxing 

measures. During those two phases, there is a competition between avoiding COVID-19 related 

fatalities and preventing harm (and secondary casualties) due to economic recession.  

Epidemic models2 provide an important mathematical tool to support decision making. A 

prominent example are the simulations performed by Ferguson et al.3 which (among others4-6) 

provided convincing evidence in favor of implementing strong non-pharmaceutical 

interventions in response to the COVID-19 outbreak. The S-I-R compartmental models7 divide 

a population into groups of susceptible (S), infected (I) and recovered (R) individuals. Adding 

more compartments allows for a refined description of specific epidemics. Such models range 

from SEIR6,8,9 and SUQC10 models of COVID-19 to models as complex as the SIDARTHE11 

model which considers susceptible, infected, diagnosed, ailing, recognized, threatened, healed 

and extinct compartments. An important feature of COVID-19 is its highly non-uniform attack 

of the different age strata of society. Statistical analysis of data collected during the COVID-19 

epidemic in Hubei12 reveals that the infection fatality ratio for individuals older than 80 is likely 

to be one order of magnitude higher than that for individuals of 50 years and younger. Age-

stratified epidemic models are therefore particularly relevant when estimating the hospital load 

and fatalities related to COVID-19. Moreover, the age-dependent patterns of social contacts 

may be incorporated into age-stratified models. As a result, the obtained mathematical models 

provide not only estimates of the overall dynamics of an epidemic, but they are also able to 

predict the effect of age-dependent relaxation measures such as reopening school.  

Here, we propose a novel approach to epidemic modeling to capture the age-dependent 

dynamics of COVID-19. Instead of using SIR-type of differential equations to describe the 

transfer between neighboring compartments, a discrete compartment model (Fig. 1) is built 

which mimics the different “trajectories” of individuals from exposure to healing or death. 

Aside from the standard compartments for susceptible and exposed individuals, the model 

differentiates between symptomatic and asymptomatic infected individuals.  
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Fig 1 Discrete transmission model for COVID-19. (a) The different compartments comprise 
susceptible (S), exposed (E), asymptomatic (A), symptomatic before (B) and in self-isolation (C), 
hospitalized in MCU (H) and ICU (Q), removed (R) and deceased (D) individuals. Individuals are 
classified into sub-compartments E1, E2, etc. according to the number of days they have spent in a 
given comportment. (b) age-dependent probability of hospitalization of symptomatic individuals, (c) 
probability of transfer from MCU to ICU, (d) fatality risk in ICU, (e) daily fatality ratio in ICU exemplarily 
shown for age-groups 80+, 70-74 and 60-64.   

 

 

The group of symptomatic is further split into a compartment of self-isolated individuals 

and those requiring hospitalization and admission to middle care (MCU) and intensive care 

units (ICU). Defining the first day of infection as Day 1, distinct sub-compartments are defined 

for all subsequent days until healing or death. The model is then updated on a daily basis by 

moving individuals to a specific sub-compartment for the subsequent day. Those moves are 

defined through shifting laws which account for the age-dependent probabilities of infection, 

admission to hospital, transfer to intensive care and death. As detailed in the Methods Section, 

the sizes of the compartments are set by the incubation time (5 days), the duration from the 

onset of symptoms to self-isolation (2 days), the average duration of viral shedding by 

asymptomatic individuals (8 days), the average duration spent in hospital (7 days) and in 

intensive care (8 days). In Fig. 1a, each encircled variable (E1, E2, etc) represents a vector 

whose components corresponds to the number of individuals in a certain age-group that are 

currently in a given sub-compartment (e.g. H2 for second day in hospital). In total, we 
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differentiate among 16 age-groups from 0 to 79 years, plus age-group #17 which represents all 

individuals aged 80 years and over.      

In addition to setting the time scales, the transfer probabilities need to be selected. Based 

on the results from the testing of small populations without any symptom-based pre-selection13, 

14, 15, we assume that 60% of the infected develop symptoms irrespective of age. All other 

probability functions determining the model are expected to be partly country-specific. For 

example, the probability of infection depends on the social contact patterns. Also the probability 

of admission to hospital and ICU depends on the healthcare system and the local culture (e.g. 

specific guidelines for physicians, elderly refusing treatments that prolong life, availability of 

medical care options at retiring homes). The probability that an individual of a first age-group 

infects a susceptible individual of a second age-group is related to the number of contacts per 

day at home, at work, at school and at other locations (see contact maps depicted in 

Supplementary Fig. 1). Furthermore, it depends on the probability of transmission per contact 

which is inferred from the reproduction number of the epidemic before applying emergency 

measures. 

Due to its high rate of infection per capita and the expected good mixing of infected and 

susceptible individuals in a small country, we chose Switzerland as a first example for 

illustrating the merits of the proposed epidemic model. Even though Switzerland ranks among 

the countries with the highest COVID-19 PCR testing rates per capita, the symptomatic patient 

bias in the reported number of cases is still too strong for model identification. We thus make 

use of the reported number of currently hospitalized and the accumulated number of deaths 

along with selected statistics on the age distributions. The age-dependency of the MCU to ICU 

transfer probability (Fig. 1c) is inferred from the age distributions in hospital and ICU in the 

canton Vaud (Supplementary Fig. 3). While up to 30% of the patients admitted to hospital will 

be transferred for age-groups 55 to 74 years, a significantly lower fraction of the individuals 

older than 70 years is transferred. The fatality risk in ICU (Fig. 1d) is estimated from the 

reported data after assuming that all deaths of individuals aged <75 years occur in ICU. Here, 

we observe a fatality risk of 40% in the age-group 70-74 years which appears to be low when 

compared to data reported for UK hospitals16. On the other hand, the canton Vaud reports that 

as many as 65% of all COVID-19 deaths occurs outside the hospital. We thus also allow for 

deaths of symptomatic patients in self-isolation with a probability of 2.3% and 7.3% for the 

age-groups 75-79 and ≥80 years, respectively. For the latter age-group, death is also assumed 

to occur in MCU with a probability of 18%. After setting the overall probability of deaths per 

compartment and age-group, a bump function is employed (Supplementary Information) to 
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determine the daily fatality risks (Fig. 1e). Using the identified functions, the overall history of 

fatalities (Fig. 2a) and the age distribution of the deceased (Fig. 2b) are predicted with 

reasonable accuracy. It is worth noting that about 70% of all COVID-19 related deaths in 

Switzerland are individuals aged 80 years or older, while the fraction of deceased is below 0.1% 

for those aged <50 years. The age-dependency of the probability of hospitalization for 

symptomatic individuals (Fig. 1b) is estimated based on the reported age-distribution in hospital. 

The resulting function HOSP
   is then adjusted such that the model predicts the documented 

history (Fig. 2c) and age-distributions of the individuals in hospital (Fig. 2d) with good accuracy. 

The resulting probabilities of hospitalization per age-group fall into the 95% credible intervals 

for COVID-19 hospitalization estimated based on data for mainland China17.    

 
 
Fig 2 Model identification and validation for Switzerland. (a) History of fatalities, (b) age distribution 
of deceased and location distribution (pie charts), (c) history of individuals in hospital (MCU and ICU 
combined) and those in ICU, (d) age distribution of hospitalized. The values provided in parentheses in 
(b) and (d) correspond to the documented data for April 20. Day 1 on the charts shown in (a) and (c) 
corresponds to March 1, 2020.  
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 A logarithmic plot of the history of hospitalizations shows a continuous change in slope 

after March 20th (Supplementary Fig. 4) which is tentatively attributed to the progressive 

implementation of social distancing and improved hygiene. Due to the time lag of 13 days 

between first exposure and possible hospitalization (Fig. 1a), the rate of transmission is 

continuously reduced from March 7 onwards. On March 13, the government then advised to 

stay (and work) at home, closed schools and banned most private and public events. This (soft) 

lockdown not only changed the probabilities of transmission per contact (coefficients *  in our 

model, see Methods Section), but also the contact patterns between susceptible and infectious 

individuals (weights   in our model). The ultimate result is an extraordinary state which leads 

to a decrease in the number of individuals in hospital after April 5. According to the model, the 

reproduction number (Fig. 3a) first decreases from 5 to 2.4 due to social distancing, before 

further decreasing from 2.4 to 0.7 due to the stay home policy and reduction of contacts at other 

locations. It is worth noting that the predicted average reproduction number for the 

extraordinary state falls into the confidence interval for estimates based on reported data18. The 

contact patterns before the extraordinary state result in a highly non-uniform spread of COVID-

19. Among the exposed, the groups 10-14 and 15-19 are the ones showing the highest infection 

ratios, while older age-groups appear to be protected by the contact patterns among age-groups 

in Switzerland. The age distribution of the exposed becomes more uniform after March 13 (Figs. 

3b-d) mostly due to school closure and reduced presence at work. The age-stratified model 

predicts significant differences in the reproduction numbers among age-groups (Figs. 3e-g) 

with a max-to-min ratio of 3.6 to 0.6 on March 13 and of 0.9 to 0.3 two weeks later. It is worth 

noting that the reproduction number for those aged 65 years and over is always lower than 1. 

The non-uniformity of the attack of COVID-19 is even more pronounced when evaluating the 

infection fatality ratio (IFR). The trained model predicts an IFR of 9.5% for the individuals 

older than 80 years (Fig. 4). It drops to 2.8% and 1.3% for the next two lower age-groups (75-

79 and 70-74 years). Among the individuals in their sixties, there is still the risk of one death 

among 100 infected. An average IFR of about 0.38% is obtained when averaging over the whole 

age distribution of the infected. The estimated IFR for the 80+ age-group falls into the 

confidence interval for the IFR estimated based on data for mainland China12, while the IFRs 

for Switzerland are lower for all other age-groups.   
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Fig 3 Reproduction number for first wave of epidemic. (a) Evolution of reproduction number 
(average weighted by the age distribution of the exposed) during transient phase induced by increased 
awareness and government measures. Age distribution of the compartment of exposed individuals on 
(b) March 13, (c) March 20 and (d) March 27. The corresponding age-stratified reproduction numbers 
for these dates are shown in (e)-(g).  

 
 
Fig 4 Estimated age-specific infection fatality ratio (IFR). The weighted average is computed 
based on the age distribution in the compartment of exposed individuals on April 20th.   
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To elucidate the importance of non-pharmaceutical intervention measures, we simulated 

the progression of the epidemic using the contact matrices and transmission probabilities that 

characterize the situation shortly before the lockdown (average reproduction number of 2.4). 

For this hypothetical scenario, herd immunity would have been reached within 2 to 3 months 

(Figs. 5a-c). By May 15, about 75% of the population would have been infected with an 

approximately uniform fraction of infected of about 85% in the 20 to 55 years age-groups (Fig. 

5a). Close to 97% of the 15-20 year old would have been infected, while less than 50% would 

have been exposed to the coronavirus among those older than 65 years. The associated peak 

ICU demand for COVID-19 patients would have been close to 60 beds per 100’000 capita (Fig. 

5b). The total of fatalities plateaus at about 22’000 with a loss of about 0.9% and 3% of the age-

groups 75-79 and ≥80 years (Fig. 5c). At the opposite extreme, we simulated the scenario where 

the extraordinary state is maintained without any relaxation of measures. Less than 10% of the 

population would have been infected by the end of 2020 (Fig. 5d), while the peak in ICU need 

would have attained about 5 beds per 100’000 (Fig. 5e). The total of fatalities remains below 

2,300 with less than 0.4% of those aged 80 years and older losing their life because of COVID-

19 (Fig. 5f).  

 
Fig 5 Evolution of the epidemic for the hypothetical cases of no measures taken (top) and 
perpetual extraordinary state (bottom). (a) and (d) show the cumulative cases and the final age-
distribution by the end of the epidemic, the number of individuals in ICU is shown by (b) and (e), while 
the cumulated number of fatalities is depicted in (c) and (f). Note that the scales of the top and bottom 
figures differ by one order of magnitude.    
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After putting the country into an extraordinary state that guarantees an overall reproduction 

number well below 1, the goal is to ease the measures in a way that a “new-normal” state is 

attained, which allows for a well-functioning economy (i.e. businesses reopen with most people 

back to work). The main constraint is that a second wave of infections needs to be avoided or 

at least be recognizable at an early stage to take corrective measures. Selected elements of the 

plan proposed by the Swiss government are summarized in Fig. 6.  

 
Fig 6 Roadmap for transitioning from an extraordinary state to a “new-normal” state. The 

progressive release will generate two intermediate states. The scaling factors i for the location-

dependent contact matrices and the associated knock-down factors * for the transmission probability 
prior to the soft lock-down are given in a table for each state. 

 

In our model, we assume that two intermediate states are attained during the stepwise 

release of measures. In the absence of experimental data, assumptions regarding the modified 

contact patterns (as represented by the location-specific contact weighting factors   and 

transmission probabilities *  in Fig. 6) are made based on a combination of intuition and 

common practice in epidemic modeling. An important coupling is that the number of contacts 

at home decreases as the fractions of individuals at work and school increase. In a first scenario, 

we consider that (i) schools reopen without any special safety measures in place (by assuming 

the same probability of transmission before and after the lockdown, i.e. * 1
school

  ) and that (ii) 

65% of the workforce is physically present at work by June 8th. The main difference between 

the “new-normal” state and the state prior to the (soft) lockdown is that social distancing is 

enforced (or at least masks are worn) at work and other locations, that 30% of the workforce is 
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in home office. The simulation results (Fig. 7a) suggest that the first release of measures will 

only have a minimal effect on the epidemic with a reproduction number staying well below 1 

from April 27 to May 11.  

 
 
Fig 7 Predicted evolution of the epidemic after step-wise release of measures including school 
reopening without special caution. Histories of (a) average reproduction number, (b) total number of 
exposed, (c) individuals in ICU, and (d) accumulated fatalities. The vertical lines in (a) indicate the 
instants of release measures #1 to #3. The inserted bar plot shows the infected per age-group by 
December 2020. (e)-(g) Results from Monte-Carlo analysis. The 50 gray curves in each plot are 
obtained after a random perturbation of the main model parameters, while the red curve corresponds to 
the respective deterministic solution reported in (b)-(d). The boxplots show the median (red), the 25th 
and 75th percentiles (in blue), the extreme data (black) and outliers (red star symbol).      

 

However, the second release (which involves the reopening of schools) is expected to cause a 

second peak of infections (Fig. 7b), generating approximately the same daily hospital and ICU 

load by mid-August as the first peak (Fig. 7c). The second peak is less steep than the first. As 

a result, there is a two-month time window from early June to the end of July where the second 
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peak could be detected through the monitoring of the increase of the hospitalizations. In other 

words, there would be less pressure on the government to take additional corrective measures 

quickly than at the beginning of the epidemic in March. However, this reasoning only applies 

when focusing on preventing the collapse of the healthcare system. The increased width of the 

second peak also implies a significantly higher death toll. While the first wave of infections 

generated about 2,000 fatalities, the second wave could generate almost 5,000 additional deaths 

(Fig. 7d). It is thus extremely dangerous if the virus spreads with a reproduction number slightly 

higher than 1. The public perception may be positive as long as the healthcare system can handle 

the load of ICU patients, while many would silently die until reaching herd immunity. In the 

current scenario, herd immunity would be achieved by the end of 2020 after infecting about 

30% of the total population. To gain insight into the robustness of the model predictions, a 

Monte-Carlo analysis is performed where we introduced six multipliers to perturb the 

probabilities of (i) developing symptoms, (ii) hospitalization, (iii) transfer to ICU, and (iv) death 

in self-isolation, (v) in MCU, and (vi) in ICU. Assuming a uniform distribution of each 

multiplier over an interval [0.9,1.1] (i.e. a standard deviation of 5.7%), 50 simulations were run 

with randomly drawn multipliers. The results shown in Figs. 7e-g reveal standard deviations 

(normalized by their means) of 8.6%, 6.0% and 5.6% for the second peak in ICU need, for the 

population infected and for the fatalities, respectively. Among the model parameters, the 

highest sensitivity of the number of deaths is observed for variations in the probability of 

hospitalization.     

To achieve a more positive outcome of the release of measures, we redid the above 

simulations with reduced probabilities of transmission at school (Fig. 8). It turns out that the 

overall reproduction number after reopening schools will remain below 1 if the probability of 

transmission (per contact at school) is reduced by 50%. In that case, a second peak could be 

avoided. Moreover, and probably most importantly, the excess fatalities associated with school 

reopening would drop from 5,000 *( 1.0)
school

   to less than 1,000 *( 0.5)
school

  . Any failure 

of maintaining the rate of transmission at school reasonably low would result in a substantial 

increase in fatalities within a few months to a level that is significantly higher than the annual 

total of fatalities associated with influenza (about 1,000 for Switzerland). Repeating the above 

simulations with the assumption that 95% of the workforce is physically present at work (which 

also increases the probability of transmission at work from 0.3 to 0.5) resulted in similar results 

(Supplementary Fig. 5). In the Supplementary Information, we also considered the immoral 

(and practically-infeasible) scenario of temporarily isolating individuals older than 70 years 

from the rest of the society while letting life resume for all other age-groups without any 
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restrictions (with an initial reproduction number of about 2.4). For that scenario, the total death 

toll would be 4,100 before reaching herd immunity (67% of total population infected) within 

two months (Supplementary Fig. 6). However, the peak hospital and ICU demand of 29 beds 

(per 100’000) are likely to exceed the capacity which may cause additional fatalities for this 

scenario.     

 

 
 
Fig 8 Effect of special caution at school on the evolution of the epidemic. Histories of (a) average 
reproduction number, (b) individuals in ICU, (c) accumulated fatalities, (d) fraction of the total population 

infected. The factor * represents the reduction of the probability of transmission at school. The table 
insert in (a) denotes the average reproduction number in October 2021.The insert in (c) shows the death 

toll (fatalities in excess of result for no release) for reopening schools as function of *. The inserts in 
(d) illustrate the age-distribution of the infected.   
 

b

c

a

beta*=0.7 beta*=0.3
d

beta* 0.1 0.3 0.5 0.7 1

<R> 0.78 0.87 0.92 0.83 0.7
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The accuracy of the model predictions hinges on the availability of high quality data and 

the understanding of the transmission dynamics of the SARS-CoV-2 virus. Both elements are 

expected to improve over time which requires the constant updating of the model. On the data 

side, the combined antibody and PCR-testing of a random group of about 10’000 individuals 

(Supplementary Information) is expected to provide valuable improvements of the assumptions 

made regarding the probabilities of hospitalization and the fraction of the asymptomatic group. 

The transport and transmission of COVID-19 through children is also unclear at this stage. 

When repeating the release scenario simulations with 0.3
school

   from age 10 upwards, while 

maintaining 1
school

   for those aged 10 years or younger, we obtain approximately the same 

response as for 0.3
school

   for all age-groups (Supplementary Fig. 7). This result suggests that 

the risk associated with reopening kindergardens and elementary school might be worth taking 

even if (i) future research demonstrates that kids are as infectious as other age-groups, and if 

(ii) safety measures (such as wearing masks) at school are not implemented for those aged <10 

years. The analysis of the multi-variate effect of the probabilities of transmission at school, 

work and other locations (Supplementary Information) revealed that effective protection 

measures at all three locations are crucial for limiting the total of fatalities.      

In summary, a new discrete modeling framework is proposed to capture the dynamics of 

highly age-sensitive epidemics and to evaluate the effect of social contact patterns on the load 

of hospitals and their intensive care units. The model architecture is specified to describe the 

COVID-19 epidemic before identifying all model parameters based on the data reported for 

Switzerland. It is demonstrated that the model provides an accurate description of the history 

and the age-distributions of the individuals hospitalized, in ICU and deceased. The obtained 

(low) infection fatality ratio of 0.4% for Switzerland is in agreement with the testing-based 

estimate for the German county Heinsberg19. The model-based analysis of the outbreak 

elucidates the highly non-uniform attack of COVID-19. It is estimated that the reproduction 

number for the mostly highly-infected age-group (15-20 years old) is up to five times higher 

than that of the least infected age-group (>80 years) which appears to be protected ‘naturally’ 

by the social contact patterns. Nonetheless, individuals aged 80 and higher make up for 70% of 

the fatalities as opposed to less than 0.1% for those below 50 years. Simulations of the three-

phase lifting of the soft lockdown in Switzerland demonstrate the need to reduce the probability 

of transmission at school (even when assuming an effective protection at all other locations) to 

avoid a second wave of COVID-19 infections. Given that the reproduction number is much 

lower during the possible build-up of the second peak in hospitalizations (as compared to the 
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first peak), there should be sufficient time for governments to take corrective measures in case 

they detect a significant increase in hospitalizations after relaxing the lockdown. Even though 

the second wave may not lead to a collapse of the healthcare system, it is still important to 

maintain the overall reproduction number always below unity to avoid the silent multiplication 

of the total number of fatalities. Most parameters and features of the detailed COIVID-19 model 

for Switzerland will also be highly relevant for forecasting the effect of lockdown relaxation 

measures in other countries. By constantly training the proposed epidemic model based on 

current data for several countries, it will also be possible to quantify the effect of government 

measures on the rate of contact and transmissions from real-life observations. This important 

insight will not only be relevant for managing the current COVID-19 crisis, but also improve 

the reliability of predictions in the event of future pandemics.  

 

 

Methods 

Data. We consider data sets collected by the private platform www.corona-virus.ch after 

sporadically cross-checking the data sets with those provided by official sources (Swiss Federal 

Office of Health (BAG) and the canton Vaud). Information on age-distributions is also obtained 

from the official sources. The age-distribution in Switzerland is obtained from data for 2016 

reported on www.populationpyramid.net (Supplementary Fig. 2). 

Epidemic model. The population is stratified into n=17 age-groups: #1 (0-4), #2 (5-9), …, #16 

(75-79) and #17 (>80). In addition, the population is partitioned into nine compartments: 

susceptible (S), asymptomatic infectious (A), symptomatic infectious (B), symptomatic in self-

isolation (C), hospitalized in middle care unit (H), hospitalized in intensive care unit (Q). 

Furthermore, each compartment is divided into sub-compartments which classify the 

individuals according to the number of days spent in a given compartment. The state of each 

sub-compartment is represented by a vector whose components correspond to the number of 

individuals for a specific age-group. For example, the third component (4)

3C  of the vector 
(4)C  

provides the number of symptomatic individuals of age-group #3 (10-14 years) that are 

spending their fourth day in self-isolation. The time resolution of the model is fixed to 

1 t day  . The main modeling assumptions are: 

 Symptomatic individuals are 50% more infectious than asymptomatic individuals1. 

Even though the viral loads in symptomatic and asymptomatic patients appear to be 
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similar7, the higher probability of infecting through coughing supports the assumption 

of a higher infectiousness for the symptomatic patients.    

 The new infections (i.e. individuals in sub-compartment 
(1)E ) are then given by 

(1) (2) (8) (1) (2)17
(1)

0

1

( ) ( ) .. ( ) ( ) ( )
( ) ( ) ( ) 1.5

j j j j j

i i ij

j j j

A t A t A t B t B t
E t t S t t t

N N
 



                
       (M1) 

with the probability of transmission 0  (per contact) for March 13, 2020 (day of soft 

lock-down) and the effective contact matrix (contacts per day)   

* * * *

home home home( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
work work work other other other school school school

t t t t t t t t t          μ μ μ μ μ  

where the dimensionless multipliers *  and   account for the location-dependent 

changes in the transmission probability and contact frequency due to non-

pharmaceutical intervention measures. The contact matrices describing the contact 

patterns at home home( )μ , at work ( )
work
μ , at school ( )

school
μ  and at other locations 

( )
other
μ  are shown in Supplementary Fig. 2. They have been obtained for Switzerland 

from Perm et al.20, extended for the age-group 80+ and readjusted to satisfy reciprocity 

for the assumed age-distribution.  

 The incubation time is fixed to 5 days which is close to the mean incubation period of 

5.2 days (with a 95% confidence interval of 4.1-7.0) observed in Wuhan21.  

 From the reports of the testing of all 3,711 passengers of the cruise liner Diamond 

Princess13  and of 85% of the population of the Italian municipality Vo’ (2,812 

subjects)14, it is assumed that 60%
SYM
   of the infected develop symptoms. 

 Based on the results from live virus isolation from the sputum of hospitalized cases in 

Germany22 and indications of similar viral loads in symptomatic and asymptomatic 

subjects in Italy14, it is assumed that asymptomatic individuals remain infectious for 8 

days. Symptomatic individuals are expected to self-isolate two days after the onset of 

symptoms.  

 Symptomatic individuals are assumed to transfer to hospital on their 5th day of self-

isolation. This assumption is made to match reports from international media that it 

takes approximately two weeks from first exposure to hospitalization. 
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 The middle care unit (MCU) features seven sub-compartments to match the average 

duration of hospitalization (outside ICU) of 7 days reported by the Swiss canton Vaud. 

 The same canton also reported an average duration of a stay in ICU of 6 days. Due to 

the temporal distribution of the high number of deaths in ICU, the intensive care unit 

features eight sub-compartments in attempt to match the average duration in ICU of 6 

days after accounting for deaths.   

 The age-dependent transfer functions HOSP
  (from self-isolation to hospital) and ICU

  

(from MCU to ICU) are inferred from the modeling of the outbreak in Switzerland (see 

main text). The same applies to the age-aggregated probabilities of death in self-

isolation, MCU and ICU. These functions are depicted in Fig. 1. The corresponding 

numerical values are provided in Supplementary Tables 1 and 2. 

Different from differential equation-based SIR-type models, there is no need to employ a 

numerical solver. After evaluating the algebraic equation (M1), the state of the model is updated 

by shifting the individuals sequentially from a first sub-compartment to a subsequent sub-

compartment (Fig. 1) while applying the above transfer functions.    

Reproduction number. The reproduction number R  is a vector whose components j
R  

estimate the number of individuals (among all age-groups) that an infectious individual of age-

group j would infect during its period of communicability (8 days for asymptomatic, and 2 days 

for symptomatic individuals). Assuming that the effective contact matrix and number of 

susceptible individuals remains constant during the period of communicability, it can be given 

by the approximation     

17

0

1

( )
( ) ( ) [8(1 ) 2 1.5 ]i

j ij SYM SYM

i j

S t
R t t

N
   



     . 

The overall reproduction number R   is computed as weighted average using the current age-

distribution of the exposed as weighting function.  

17

1

17

1

( ) ( )

( )

( )

i i

i

i

i

R t E t

R t

E t





 



 

with  
(1) (2) (5)...

i i i i
E E E E    . 
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Infection Fatality Ratio (IFR). Denoting the daily probabilities of death in self-isolation, 

MCU and ICU as 
( )k

C

i
p , 

( )k
H

i
p  and 

( )k
Q

i
p , the probability of survival ( )

i
ISR  of an infected 

individual of age-group i reads 

( ) (6)

( ) ( ) ( )

5

1

2 7 8

1 3 1

( ) (1 ) (1 ){(1 )(1 )

              (1 )[(1 ) (1 ) (1 )]}.

k

k k k

C i C

i SYM SYM i HOSP i

k

i H i H i Q

HOSP i ICU i ICU i

k k k

ISR p p

p p p

  

  



  

     

     



  
         

Hence, we have the corresponding IFR for age-group i, 

( ) 1 ( )
i i

IFR ISR   

As for the reproduction number, we make use of the age-distribution for the exposed to calculate 

the average IFR.  
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